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In recent years, the extensive application of machine learning technologies has been
witnessed in various fields. However, in many applications, massive data are distributively
stored in multiple data owners. Meanwhile, due to the privacy concerns and communica-
tion constraints, it is difficult to bridge the data silos among data owners for training a
global machine learning model. In this paper, we propose a privacy-preserving and non-
interactive federated learning scheme for regression training with gradient descent, named
VANE. With VANE, multiple data owners are able to train a global linear, ridge or logistic
regression model with the assistance of cloud, while their private local training data can
be well protected. Specifically, we first design a secure data aggregation algorithm, with
which local training data from multiple data owners can be aggregated and trained to a
global model without disclosing any private information. Meanwhile, benefit from our data
pre-processing method, the whole training process is non-interactive, i.e., there is no inter-
action between data owners and the cloud. Detailed security analysis shows that VANE can
well protect the local training data of data owners. The performance evaluation results
demonstrate that the training performance of our VANE is around 103 times faster than
existing schemes.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid growth of data volume in information society, the use of machine learning technology is rapidly expanding
in various fields, and bringing great conveniences to people’s life [21,7,28]. As one of the fundamental machine learning algo-
rithms, regression model has attracted considerable attention since it is an essential tool in decision making systems such as
policy making, health care, law enforcement, and finance [33,36,24]. For example, in e-healthcare, regression model is
already being employed by care management organizations for constructing medical pre-diagnosis systems, which can save
an immense amount of diagnosis time for patients [19,15]. In general, training a regression model often requires staggering
quantities of data, and in many applications, data are stored distributively in different data owners. As shown in Fig. 1, in
such a distributed scenario, a sole data owner collecting only a small dataset cannot train a regression model with high qual-
ity (i.e, the trained local regression model is not of high accuracy). Therefore, data owners expect to collaboratively train a
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Fig. 1. Collaborative regression training.
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regression model with the assistance of the cloud service provider, so that each of the parties can enjoy a global model with
higher accuracy than what it can achieve alone.

Unfortunately, due to the privacy concerns and communication constraints, there are still many challenges lying ahead of
collaborative regression training [9,4,2,25]. On the one hand, data owners’ local training data commonly contain massive pri-
vate information of individuals or organizations. Specifically, local training data can be divided into two categories. The first
one is the raw dataset collected from individuals, which contains massive personal private information (i.e., health condition,
income situation, etc.). Once these data are compromised, it may lead to computer-assisted crime by adversaries. The second
category of local training data is the parameter of the local trained model, which generally contains massive statistical data
of an organization. Leakage of these data may disclose the corporate secrets (i.e., operating conditions, management infor-
mation, etc.) of an organization, which may further result in an economic loss. On the other hand, the iterative operation of
regression training brings huge communication overhead among data owners and the cloud service provider, which is hard
to handle in practice. Thus, how to achieve efficient collaborative regression training while protecting multiple data owners’
sensitive data has attracted considerable interest recently.

To address the above-mentioned challenges, plenty of federated learning schemes for regression training have been pro-
posed [8,18,5], which mainly rely on homomorphic encryption techniques and gradient descent algorithm. In detail, based
on the homomorphic properties, existing schemes are able to execute gradient descent algorithm over ciphertexts for train-
ing a regression model, which can protect local training data of data owners. However, since gradient descent is an iterative
algorithm, multiple interactions and repeated time-consuming homomorphic operations are inevitable, which brings mas-
sive extra computation and communication overhead. Moreover, for securely training a global regression model, most exist-
ing schemes apply two-cloud architecture to aggregate local datasets of data owners, which will spend more resources for
employing two clouds in reality.

In this paper, we propose a privacy-preserving and non-interactive federated learning scheme for regression training,
named VANE. With VANE, multiple data owners are able to train a global regression model with the assistance of the cloud
service provider, while their local training data can be well protected. Moreover, during the whole training process, interac-
tions between data owners and the cloud service provider are not required. Specifically, the main contributions of this paper
are threefold.

� First, VANE achieves non-interactive regression training and model updating. In VANE, local datasets of data owners are
first pre-processed into local training data, with which the global regression model can be trained without interactions
between data owners and the cloud service provider. Moreover, we also design strategies for updating the trained global
model regularly.
� Second, VANE is privacy-preserving in regression training. Based on Paillier cryptosystem, we propose a secure data aggre-
gation algorithm under the single-cloud architecture, which can securely aggregate local training data of multiple data
owners for training a global regression model. Thus, the sensitive information of data owners can be well protected
and only one cloud is required in our proposed scheme.
� Third, we analyze the security of VANE and conduct experiments to evaluate its performance. The results show that with
our modified Paillier cryptosystem, the local training data of data owners can be well protected. In addition, our scheme is
indeed efficient in terms of computation cost and communication overhead.
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The remainder of this paper is organized as follows. In Section 2, we formalize the models and identify our design goal. In
Section 3, we review the Paillier cryptosystem, linear, ridge, and logistic regressions as preliminaries. Then, we propose our
VANE in Section 4, followed by the security analysis and performance evaluation in Sections 5 and 6. We also review some
related works in Section 7. Finally, we draw our conclusion in Section 8.
2. Models, security requirements and design goal

In this section, we formalize the system model, threat model, and security requirements. Then, we identify our design
goal.
2.1. System model

In our system model, we mainly focus on how to train a global regression model without disclosing the sensitive infor-
mation of data owners. Each data owner is equipped with a workstation, which can store and pre-process the collected data-
set, as well as connect the cloud service provider. Specifically, the system consists of three parts: 1) trusted authority (TA); 2)
data owners (DOs); and 3) cloud service provider (CSP), as shown in Fig. 2.

� TA is a trusted authority (i.e., a government organization), which initializes the system via generating system parameters,
and distributing keys to data owners and the cloud service provider.
� DOs ¼ fDO1; . . . ;DOmg is a set ofm data owners. In our system, each DOi 2 DOs has its own local dataset. Specifically, each
DOi first pre-processes its local dataset to generate local training data. Then, the local training data will be encrypted and
outsourced to the cloud service provider for generating the global regression model.
� CSP is the cloud service provider, which has abundant storage space and powerful computing capability (e.g., Google,
Microsoft, Apple). In our system, CSP is responsible for aggregating the ciphertexts of local training data from multiple
data owners, decrypting the aggregated result, and training the global regression model for data owners. Moreover,
the cloud service provider has a testing dataset (e.g., the open machine learning dataset [3]), with which the cloud service
provider is able to estimate the quality of the global regression model.

2.2. Threat model and security requirements

In our threat model, we consider that DOs and CSP are honest-but-curious [10]. In specific, during the process of federated
regression training, CSP honestly executes the data aggregation protocol and trains the global regression model credibly, but
it is greedy about the local training data of DOs. Moreover, DOs honestly outsource their encrypted local training data with-
out tampering. But for commercial interests, each DO is curious about other DOs’ local training data. Besides, the global
regression model should be updated regularly with continuously-generated data. Nevertheless, the data acquisition devices
of DOs may be out of order, and even some DOs may be under control of adversaries. As a result, the global regression model
will be corrupted by contaminated datasets. Therefore, we should also take fuzzy data into consideration during model
updating. Note that there may be some other passive or active attacks (e.g. side channel attack and denial of service) during
the federated learning. Since our target is to protect the sensitive data of DOs and guarantee the quality of trained global
Fig. 2. System model under consideration.
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model, these attacks are currently out of scope of this paper and will be considered in our future work. Considering the above
security issues, the following security requirements should be satisfied.

� Ensuring the privacy of DOs’ local training data. In general, the local training data consists of massive statistical data of DOs,
which may contain sensitive information (i.e., business operation information) of enterprises. Therefore, during the fed-
erated regression training and model updating phases, the local training data of DOs should be protected.
� Resisting fuzzy data in global regression model updating. During the model updating process, some fuzzy data may be col-
lected and contaminate the training dataset, which directly affects the quality of the global regression model. Therefore,
after updating, the generated global model should be estimated for resisting fuzzy data and guaranteeing its accuracy.

2.3. Design goals

Based on the above-mentioned system model and security requirements, in this paper, our goal is to design a secure effi-
cient federated learning scheme for regression training. Specifically, the following objectives should be achieved.

� Guarantee security and privacy preservation. Data privacy and security is always a non-negligible problem lying ahead of
machine learning. Therefore, a fundamental goal of VANE is privacy preservation, i.e., during the federated regression
training, the security of a DO’s local training data should be guaranteed against CSP and other DOs.
� Low computation and communication overhead. In order to achieve privacy-preserving regression training, time-
consuming computations (e.g., homomorphic operations) are inevitably incurred, which brings extra computation over-
head. Moreover, in practice, it is hard for CSP to handle huge amounts of training data. Therefore, the proposed VANE
should achieve high-efficiency in terms of computation cost and communication overhead.

3. Preliminaries

In this section, we review Paillier cryptosystem, linear, ridge, and logistic regressions, which serve as the basis of our
scheme.

3.1. Paillier cryptosystem

We apply Paillier cryptosystem [22] as a building block of our scheme, which is a public key cryptography widely used in
privacy-preserving machine learning techniques. Here, we briefly review the Paillier cryptosystem as follows.

� Key Generation: Given the security parameter j and two big primes jpj ¼ jqj ¼ j, compute N ¼ p � q and
k ¼ lcmðp� 1; q� 1Þ. Then, select a random number g 2 Z�N2 satisfying gcdðLðgk mod N2Þ;NÞ ¼ 1, where

LðxÞ ¼ ðx� 1Þ=N. Moreover, compute l ¼ ðLðgk mod N2ÞÞ�1 mod N. Then, the public key pk is ðN; gÞ, and the correspond-
ing secret key sk is ðl; kÞ.
� Encryption: Given a message m 2 ZN , the ciphertext can be computed with the public key pk as
c ¼ EpkðmÞ ¼ gm � rN mod N2, where r is a random number in Z�N .
� Decryption: Given a ciphertext c 2 Z�N2 , the corresponding plaintext can be retrieved with the secret key sk through com-

puting m ¼ DskðcÞ ¼ Lðck mod N2Þ � l mod N.

The additive homomorphism of Paillier can be described as: for two arbitrary ciphertexts c1 ¼ Epkðm1Þ and c2 ¼ Epkðm2Þ,
we have c1 � c2 ¼ Epkðm1Þ � Epkðm2Þ ¼ gm1þm2 ðr1r2ÞN mod N2 ¼ Epkðm1 þm2Þ.

Moreover, the multiple homomorphism of Paillier can be described as: for a ciphertexts c1 ¼ Epkðm1Þ and a plaintext m2,

we have cm2
1 ¼ Epkðm1Þm2 ¼ gm1m2 rm2N

1 mod N2 ¼ Epkðm1m2Þ.

3.2. Linear regression

Linear regression [30] is one of the most popular machine learning algorithms for modeling the relationship between one
or more input variables. In statistics, linear regression is extensively used for data prediction in many applications such as
insurance or loan risk estimation, personalized medicine, mark analysis and so on.

Linear regression focuses on predicting the continuous target values of samples. Specifically, given a sample
x ¼ ðx1; x2; . . . ; xdÞ, we have one hypothetical regression output y ¼ hðh; xÞ, where h ¼ ðh0; h1; . . . ; hdÞ is the regression coeffi-

cients, and hðh; xÞ ¼ h0 þ Rd
j¼1hjxj is the inner product of feature values and regression coefficients, respectively.

For training a linear regression model, assume that D ¼ fxðkÞ; yðkÞgnk¼1 is a training dataset with n samples. Then, the loss
function can be defined as follows
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LðhÞ ¼ 1
2n

Xn
k¼1
ðhðh; xðkÞÞ � yðkÞÞ2:
The goal of linear regression training is to minimize the loss function LðhÞ through adjusting the parameters h. In general,
gradient descent is commonly used to solve the above problem, which is an iterative optimization algorithm for minimizing
the loss function. Specifically, with gradient descent, h is computed iteratively as
hiþ1 ¼ hi � arhLðhÞ;

where h0 is initialized with a random value or all zero, a is the learning rate, andrhLðhÞ is the gradient of LðhÞwith respect to
h. Then, we have
hiþ10 ¼ hi0 � a
n

Xn
k¼1
ðhðh; xðkÞÞ � yðkÞÞ

hiþ1j ¼ hij � a
n

Xn
k¼1
ðhðh; xðkÞÞ � yðkÞÞxðkÞj ;
where j ¼ 1;2; . . . ; d. Moreover, the iterative operation terminates when the loss function LðhÞ converges or the maximum
iteration is reached.

3.3. Ridge regression

Compared to linear regression, ridge regression [13] introduces an ‘2-norm regularization term in loss function to penal-
ize large regression coefficients, which effectively alleviates the overfitting problem in linear regression. The loss function of
ridge regression can be represented as
LðhÞ ¼ 1
2n

Xn
k¼1
ðhðh; xðkÞÞ � yðkÞÞ2 þ kkhk2;
where kkhk2 is the ‘2-norm regularization term, and k is the regularization parameter.
Then, for training the ridge regression model, the gradient descent algorithm can also be used for computing h. Specifi-

cally, the iterative process for ridge regression is computed as follows.
hiþ10 ¼ ð1� 2kaÞhi0 � a
n

Xn
k¼1
ðhðh; xðkÞÞ � yðkÞÞ

hiþ1j ¼ ð1� 2kaÞhij � a
n

Xn
k¼1
ðhðh; xðkÞÞ � yðkÞÞxðkÞj ;
where a is the learning rate, j ¼ 1;2; . . . ; d. Similar to linear regression, the iterative operation terminates when the loss func-
tion LðhÞ converges or the maximum iteration is reached.

3.4. Logistic regression

In order to resolve classification problem, logistic regression [23] is proposed, which maps the prediction results into a
probability value in ½0;1� as follows:
y ¼ 1
1þ e�hðh;xÞ
For the logistic function, the loss function can be approximated by second-order Taylor series and ‘2-norm regularization
[11] as
LðhÞ ¼ 1
n

Xn
k¼1

log 2� 1
2
yi � hðh; xÞ þ

1
8
hðh; xÞ2

� �
þ kkhk2:
Then, the gradient descent for training a logistic regression model can be executed as follows.
hiþ10 ¼ ð1� 2kaÞhi0 � a
n

Xn
k¼1

1
4hðh; xðkÞÞ � 1

2 y
ðkÞ� �

hiþ1j ¼ ð1� 2kaÞhij � a
n

Xn
k¼1

1
4hðh; xðkÞÞ � 1

2 y
ðkÞ� �

xðkÞj ;
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where a is the learning rate, j ¼ 1;2; . . . ; d, and the iterative operation terminates when the loss function LðhÞ converges or
the maximum iteration is reached.
4. Proposed privacy-preserving scheme

In this section, we propose our VANE scheme. Specifically, we first introduce the main idea of VANE. Then, the secure data
aggregation algorithm and a detailed description of VANE are presented. Moreover, we extract our secure data aggregation
and training (SDAT) algorithm from VANE, and carefully prove its correctness.
4.1. Main idea of the proposed scheme

In traditional federated regression training schemes [8,18], for each iteration of gradient descent algorithm, CSP and DOs
need to collaboratively compute local gradients for updating global model parameters. Therefore, multiple interactions
between DOs and CSP are necessary to train the global regression model.

In VANE, we observe that the operations
Pn

k¼1ðhðh; xðkÞÞ � yðkÞÞ andPn
k¼1ðhðh; xðkÞÞ � yðkÞÞxðkÞj in gradient descent can be con-

verted to hðh;Pn
k¼1 x

ðkÞÞ �Pn
k¼1y

ðkÞ and hðh;Pn
k¼1x

ðkÞ � xðkÞj Þ �
Pn

k¼1y
ðkÞ � xðkÞj , respectively. Base on this conversion, in VANE, each

DO can locally pre-process its local dataset into a matrix as local training data through computingPn
k¼1x

ðkÞ;
Pn

k¼1y
ðkÞ;
Pn

k¼1x
ðkÞ � xðkÞj , and

Pn
k¼1y

ðkÞ � xðkÞj . Moreover, via aggregating matrixes frommultiple data owners, CSP is able
to generate global training data for executing gradient descent algorithm while local gradients are not required. Therefore,
the global regression model can be trained non-interactively, which significantly reduces the computation cost and commu-
nication overhead in federated regression training.

In addition, to protect local training data of DOs, we propose a secure data aggregation algorithm under single-cloud
architecture, which is introduced in the following.
4.2. Secure data aggregation algorithm

In this section, we modify Paillier cryptosystem and propose our secure data aggregation algorithm, which consists of four
functions as follows.

Key Generation: KeyGenerateðjÞ ! ðPP; SKDOi
; SKCSPÞ. Given a security parameter j, TA first executes GenðjÞ to generate

parameters of Paillier cryptosystem, which includes the secret key SKp ¼ ðl; kÞ and the public key PKp ¼ ðN; gÞ. Note that
in Paillier cryptosystem, the order of g is a multiple of N, i.e., ordðgÞ ¼ kN, where k is an integer. Then, TA selects a large ran-
dom integer c satisfying jcj < j=2 and gcdðk; cÞ ¼ 1, and computes h ¼ gc mod N2. Finally, TA publishes the public parame-
ters PP ¼< j;N; g;h >.

For generating secret keys for DOs, TA first splits N into m random numbers fn1;n2; . . . ;nmg, s.t.,
Pm

i¼1ni ¼ N, where m is
the number of DOs in our system. Then, TA chooses a random number Rt 2 Z�N as the task ID for every data aggregation task,

and computes SKDOi
¼ Rni

t mod N2 as the secret key for each DOi.
Finally, TA generates the secret key SKCSP ¼< k;l; c > for CSP.
Data Encryption: EncryptðxðiÞ; SKDOi

Þ ! ½½xðiÞ��. Given a private message xðiÞ 2 ZN of DOi, it can be encrypted by DOi through
computing
½½xðiÞ�� ¼ gxðiÞ � hri � SKDOi
mod N2; ð1Þ
where ri is a random number which satisfies jrij < j
2.

Data Aggregation: Aggregateð½½xð1Þ��; . . . ; ½½xðmÞ��Þ ! ½½x��. Given m ciphertexts from m DOs, CSP can aggregate these cipher-
texts through computing
½½x�� ¼
Ym
i¼1
½½xðiÞ�� mod N2: ð2Þ
Aggregated Result Decryption: Decryptð½½x��; SKCSPÞ ! x. After aggregating the ciphertexts from m DOs, CSP is able to
decrypt the aggregated result with SKCSP through computing
x ¼
Xm
i¼1

xðiÞ ¼ ðLð½½x��k mod N2 � lÞ mod NÞ mod c; ð3Þ
where LðxÞ ¼ x�1
N .

The correctness of our secure data aggregation algorithm is proved in Section 4.4.
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4.3. Description of our proposed scheme

In this section, we detailedly introduce our proposed scheme, which mainly consists of four phases: 1) System initializa-
tion; 2) Local training data generation and encryption; 3) Secure data aggregation and training; and 4) Model updating and esti-
mation. The overview is sketched in Fig. 3. At first, TA bootstraps the system through distributing keys and system
parameters to DOs and CSP. Then, each DOi pre-processes its local dataset and computes the encrypted local training data,
which is further aggregated by CSP to generate global training data. Finally, CSP trains the global regression model and esti-
mates its accuracy. To describe VANE more clearly, we give the description of used notations in Table 1.

4.3.1. System Initialization
In the system initialization phase, TA first generates system parameters, and distributes keys to DOs and CSP, respectively.

Moreover, data normalization is executed by DOs.
� Step 1. System Parameters and Keys Distribution
TA first executes KeyGenerateðjÞ in our secure data aggregation algorithm to generate public parameters and secret keys

for DOs and CSP.
� Step 2. Data Normalization
To improve the efficiency of federated regression training, data normalization on local datasets should be executed at

first. Specifically, assume that the local dataset of DOi is represented as
DðiÞ ¼ fxðikÞ; yðikÞgn
ðiÞ

k¼1;
where xðikÞ ¼ ðxðikÞ1 ; . . . ; xðikÞd Þ is the feature vector, yðikÞ is the target variable, and nðiÞ is the number of samples collected by DOi.

Then, for each feature, DOi computes maximum and minimum values in DðiÞ to generate vectors
xðiÞmax ¼ ðmaxfxðikÞ1 g
nðiÞ

k¼1; . . . ;maxfxðikÞd g
nðiÞ

k¼1Þ
xðiÞmin ¼ ðminfxðikÞ1 g

nðiÞ

k¼1; . . . ;minfxðikÞd g
nðiÞ

k¼1Þ:
After this, DOi sends < xðiÞmax; x
ðiÞ
min;n

ðiÞ > to TA.
Upon receiving all vectors from DOs, TA can compute the global maximum and minimum vectors xðmaxÞ ¼ ðxmax

1 ; . . . ; xmax
d Þ

and xðminÞ ¼ ðxmin
1 ; . . . ; xmin

d Þ through extracting the maximum and minimum values from xðiÞmax and xðiÞmin in each dimension,
where i ¼ 1; . . . ;m. In addition, for security consideration, TA disturbs xðmaxÞ and xðminÞ as follows
xðmaxÞ  ðxmax
1 þ e1; . . . ; xmax

d þ edÞ
xðminÞ  ðxmin

1 � e01; . . . ; xmin
d � e0dÞ;
where ej and e0j; j ¼ 1; . . . ; d, are small random numbers. In addition, TA computes the total number of samples collected from

DOs n ¼Pm
i¼1n

ðiÞ. Finally, TA returns < xðmaxÞ; xðminÞ > to DOs, and sends n to CSP.

After receiving < xðmaxÞ; xðminÞ > from TA, each DOi normalizes its local dataset through computing xðikÞj  xðikÞ
j
�xmin

j

xmax
j
�xmin

j
, where

j ¼ 1; . . . ; j and k ¼ 1; . . . ;nðiÞ.
Fig. 3. Overview of VANE.
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Table 1
Definition of Notations in VANE.

Notation Definition

j Security parameter.
jmj The bit length of m.
½½m�� The ciphertext of m with our modified Paillier encryption.
SKp Secret key of Paillier cryptosystem.
PKp Public key of Paillier cryptosystem.
SKDOi

Secret key of DOi .
SKCSP Secret key of CSP.

DðiÞ Local dataset of DOi.

XðikÞ Collected data from a sample of DOi.

MðikÞ Extended matrix from XðikÞ .

MðiÞ Local training data of DOi .

½½MðiÞ�� Encrypted local traning data of DOi .

½½M�� The aggregated ciphertext of ½½MðiÞ��.
M Global training data.
AXjj0 , AYj Elements in M, j; j0 ¼ 1; . . . ;d.
h Regression model.
a Learning rate of gradient descent.
k Regularization parameter.
Mu Updated global training data.
D0 Testing dataset of CSP.
RSS Residual Sum of Squares.
MAE Mean Absolute Error.
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4.3.2. Local training data generation and encryption
In this phase, every DOi first pre-processes its local dataset to generate local training data. Moreover, with the secret key

SKDOi
, each DOi encrypts its local training data before outsourcing to CSP.
� Step 1. Data Pre-processing

Based on above description, each sample in DðiÞ is represented as a vector XðikÞ ¼ ðxðikÞ1 ; . . . ; xðikÞd ; yðikÞÞ. DOi first extends each

XðikÞ to a ðdþ 1Þ � ðdþ 1Þ matrix as follows
MðikÞ ¼

xðikÞ1 ; � � � ; xðikÞd ; yðikÞ

ðxðikÞ1 Þ
2
; � � � ; xðikÞd � xðikÞ1 ; yðikÞ � xðikÞ1

..

. . .
. ..

. ..
.

xðikÞ1 � xðikÞd ; � � � ; ðxðikÞd Þ
2
; yðikÞ � xðikÞd

2
6666664

3
7777775
:

Then, from k ¼ 1 to nðiÞ;DOi computes MðiÞ ¼PnðiÞ
k¼1M

ðikÞ as its local training data.
� Step 2. Local Training Data Encryption
Before sending to CSP, each DOi encrypts its local training data with secret key SKDOi

. Specifically, for each element

aðiÞ 2 MðiÞ;DOi encrypts it through executing EncryptðaðiÞÞ in our secure data aggregation algorithm. Note thatMðiÞ is a rational

number matrix, and for executing encryption operations, we should transfer MðiÞ into integer matrix through computing
bc � aðiÞc, where c can be selected as 1000 or bigger integers for achieving higher accuracy.

Finally, DOi obtains the encrypted local training data ½½MðiÞ��, and sends < ½½MðiÞ�� > to CSP.

4.3.3. Secure data aggregation and training
In this phase, CSP aggregates the encrypted local training data from DOs, decrypts the aggregated results with the secret

key SKCSP , and trains the global regression model with gradient descent algorithm.
� Step 1. Local Training Data Aggregation
Once the encrypted local training data from all DOs are received, DO first aggregates them over ciphertexts. In specific, for

each encrypted element ½½aðiÞ�� in ½½MðiÞ��, where i ¼ 1; . . . ;m, CSP executes Aggregateð½½að1Þ��; . . . ; ½½aðmÞ��Þ in our secure data
aggregation algorithm. In other words, CSP computes
½½M�� ¼ �
Ym
i¼1
½½MðiÞ��; ð4Þ
where � represents hadamard product between matrixes. Then, for each element ½½a�� 2 ½½M��, CSP decrypts it through exe-
cuting Decryptð½½a��Þ. Finally, the global training data M can be obtained by CSP. For simplify, we use AXjj0 and AYj, where

j ¼ 0; . . . ; d and j0 ¼ 1; . . . ; d, to present the elements in M. Then, the matrix M can be represented as
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M ¼

AX01; � � � ; AX0d; AY0

AX11; � � � ; AX1d; AY1

..

. . .
. ..

. ..
.

AXd1; � � � ; AXdd; AYd

2
66664

3
77775:
� Step 2. Global Regression Training
After generating the global training data, CSP is able to train the global regression model for DOs. In specific, with M, CSP

first computes vectors
AX0 ¼ ðn;AX01; . . . ;AX0dÞ
AXj ¼ ðAX0j;AXj1; . . . ;AXjdÞ;
where j ¼ 1; . . . ; d. Then, CSP selects the learning rate a, initializes regression parameters h ¼ ðh0; h1; . . . ; hdÞ as random num-
bers or zeros, and trains the global linear and ridge as follows.

For linear regression training, CSP executes the gradient descent algorithm
hiþ10 ¼ hi0 � a
n ðh � AXT

0 � AY0Þ
hiþ1j ¼ hij � a

n ðh � AXT
j � AYjÞ;

ð5Þ
where j ¼ 1; . . . ; d.
For ridge regression training, CSP executes the gradient descent algorithm
hiþ10 ¼ ð1� 2kaÞhi0 � a
n ðh � AXT

0 � AY0Þ
hiþ1j ¼ ð1� 2kaÞhij � a

n ðh � AXT
j � AYjÞ;

ð6Þ
where j ¼ 1; . . . ; d.
For logistic regression training, note that target variables yðikÞ 2 f�1;1g, negative values may exist in the ðdþ 1Þ-th col-

umn of MðiÞ. Therefore, DOi should add nðiÞ in the ðdþ 1Þ-th column for encrypting MðiÞ correctly. Moreover, CSP can also
obtain the global training data through subtracting n in the ðdþ 1Þ-th column inM. Then, CSP is able to train the global logis-
tic regression model through computing
hiþ10 ¼ ð1� 2kaÞhi0 � a
n

1
4 h � AXT

0 � 1
2AY0

� �
hiþ1j ¼ ð1� 2kaÞhij � a

n
1
4 h � AXT

j � 1
2AYj

� �
;

ð7Þ
where j ¼ 1; . . . ; d. Finally, CSP obtains the linear, ridge or logistic regression model h, and returns it to DOs.
Algorithm1: SDAT: Secure Data Aggregation and Training
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4.3.4. Model updating and estimation
In practice, the regression model should be updated regularly, and there are mainly two strategies for updating the

regression model: updating with new coming samples and updating with new coming data owner. Moreover, for ensuring
the accuracy, CSP is responsible for estimating the updated global regression model after updating.
� Model Updating
On the one hand, the samples in local datasets are continuously collected by DOs. Therefore, the global regression model

can be updated with new coming samples. On the other hand, some new data owners may participate in the system. Then, the
global regression model can be updated with new coming data owners.

Specifically, for updating the model with new coming samples, TA first renews the random number Rt for updating the
task ID, and generates new secret keys for DOs. In addition, TA updates normalization parameters through checking the max-
imum and minimum feature values of new coming samples. Then, similar to Section 4.2, each DO pre-processes its new col-

lected samples and generates the encrypted fresh training data ½½MðiÞf �� with its new secret key. Finally, CSP aggregates ½½MðiÞf ��,
where i ¼ 1; . . . ;m to generate Mf through executing the same operations in Section 4.3, computes Mu ¼ M þMf , and
updates the global regression model to hu via retraining it with Mu.

For updating the model with a new coming data owner DO0i, TA first regenerates secret keys for all DOs through selecting

mþ 1 random numbers < n1; . . . ;nmþ1 >, s.t.,
Pmþ1

i ni ¼ N, and updates normalization parameters with the maximum and
minimum feature values in the local dataset of DO0i. Then, each DO generates its encrypted local training data and outsources
it to CSP. As a result, the local training data of DO0i is contained in the new aggregated global training data Mu, and CSP can
update the global regression model to hu via retraining it with Mu.
� Model Estimation
During the regression model updating, it is nonnegligible that some fuzzy data may mix in the training dataset. Thus, CSP

is responsible for estimating the generated global regression model after updating to ensure its accuracy.
Specifically, in our system, we assume CSP has a testing dataset (i.e., the open machine learning dataset) containing u

samples, which is presented as D0 ¼ fx0ðlÞ; y0ðlÞgul¼1. Then, the modeling error of global regression model can be defined with
Residual Sum of Squares (RSS) as follows.
RSSðhÞ ¼
Xu
l¼1
ðPreðy0ðlÞÞ � y0ðlÞÞ2;
where Preðy0ðlÞÞ is the predicted value of x0ðlÞ with the generated model.
Finally, CSP can estimate the contribution of new coming data through computing
C ¼ RSSðhuÞ
RSSðhÞ :
In detail, C P 1 means that new coming data reduce the accuracy of global regression model, and CSP can discard this
model updating. While C < 1, it means that new coming data are effective for improving the accuracy of global regression
model, and CSP will accept this model updating.

4.4. Correctness of the proposed scheme

In this section, we first extract SDAT Algorithm 1 of our proposed VANE, and prove the correctness of SDAT in terms of
secure data aggregation and global regression training, which is sufficient to verify the correctness of VANE.

4.4.1. Correctness of secure data aggregation
In SDAT, local training data are first aggregated with our secure data aggregation algorithm. Thus, we prove the correct-

ness of our secure data aggregation algorithm as follows.
In Eq. (2), for aggregating ciphertext ½½xðiÞ��, CSP computes
½½x�� ¼
Ym
i¼1
½½xðiÞ�� mod N2

¼
Ym
i¼1

gxðiÞ � hri � Rni
t mod N2

¼ g

Xm
i¼1

xðiÞ

� h

Xm
i¼1

ri

� R

Xm
i¼1

ni

t mod N2

¼ g

Xm
i¼1

xðiÞþc�
Xm
i¼1

ri

� RN
t mod N2:
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It can be seen that the in the aggregated ciphertext ½½x��, parameter N is retrieved. Moreover, since the lengths of c and ri

are less than j;
Pm
i¼1

xðiÞ þ c �Pm
i¼1

ri is within the plaintext space of Paillier cryptosystem. Therefore, CSP is able to decrypt ½½x��
with the secret key SKCSP . Specifically, in Eq. (3), we have
x ¼ ðLð½½x��k mod N2 � lÞ mod NÞ mod c

¼
Xm
i¼1

xðiÞ þ c �
Xm
i¼1

ri

 !
mod c

¼
Xm
i¼1

xðiÞ:
As a result, the correctness of our secure data aggregation algorithm is verified, and it can be inferred that the global train-
ing data is the summation of all samples from DOs, which is presented as
M ¼
Xm
i¼1

MðiÞ ¼
Xm
i¼1

XnðiÞ
k¼1

MðikÞ:
4.4.2. Correctness of global regression training
With global training data, CSP is able to train the global regression model based on gradient descent algorithm. Since glo-

bal training data M is the summation of all samples from DOs, in Eq. (4), it can be derived that
h � AXT
0 � AY0 ¼ h �

Xm
i¼1

XnðiÞ
k¼1
ð1; xðikÞ1 ; . . . ; xðikÞd Þ

T �
Xm
i¼1

XnðiÞ
k¼1

yðikÞ ¼ h h;
Xm
i¼1

XnðiÞ
k¼1
ð1; xðikÞ1 ; . . . ; xðikÞd Þ

 !
�
Xm
i¼1

XnðiÞ
k¼1

yðikÞ

¼
Xm
i¼1

XnðiÞ
k¼1
ðhðh; xðikÞÞ � yðikÞÞ

h � AXT
j � AYj ¼ h �

Xm
i¼1

XnðiÞ
k¼1
ðxðikÞj ; xðikÞ1 � xðikÞj ; . . . ; xðikÞd � xðikÞj Þ

T �
Xm
i¼1

XnðiÞ
k¼1

yðikÞ � xðikÞj

¼ hðh;
Xm
i¼1

XnðiÞ
k¼1
ðxðikÞj ; xðikÞ1 � xðikÞj ; . . . ; xðikÞd � xðikÞj ÞÞ �

Xm
i¼1

XnðiÞ
k¼1

yðikÞ � xðikÞj ¼
Xm
i¼1

XnðiÞ
k¼1
ðhðh; xðikÞÞ � yðikÞÞxðikÞj ;
where hðh; xðikÞÞ ¼ h0 þ Rd
j¼1hjx

ðikÞ
j .

Finally, it can be verified that the gradient descent algorithm of Eq. (4) is executed with all samples from DOs. For linear
regression, we have
hiþ10 ¼ hi0 � a
n

Xm
i¼1

XnðiÞ
k¼1
ðhðh; xðikÞÞ � yðikÞÞ

hiþ1j ¼ hij � a
n

Xm
i¼1

XnðiÞ
k¼1
ðhðh; xðikÞÞ � yðikÞÞxðikÞj :
Correspondingly, the correctness for ridge and logistic regression can also be verified easily.

5. Security analysis

In this section, we analyze the security of our VANE. Specifically, corresponding to the security requirements discussed in
Section 2, our analysis mainly focuses on the privacy of DOs’ local training data and the accuracy of global regression con-
sidering fuzzy data.
� The privacy of DOs’ Local Training Data is Achieved. In our VANE, since the privacy of DOs’ local training data relies on

our modified Paillier cryptosystem, we prove its security firstly.
In original Paillier cryptosystem, the secret key SKP is strong to decrypt arbitrary ciphertexts encrypted with the public

key PKP . Therefore, to achieve secure data aggregation with original Paillier cryptosystem, double-cloud model is applied in
[17,35]. Specifically, one cloud is responsible for aggregating the ciphertexts from data owners, while the other one is to
decrypt the aggregated results for training the global model. Nevertheless, double-cloud model brings extra communication
overhead, and it requires that two clouds are non-colluded, which is difficult to achieve in reality.

In our modified Paillier cryptosystem, we split N in public key PKP to m parts fn1; . . . ;nmg, and compute secret keys

SKDOi
¼ Rni

t mod N2 for each DOi. Then, the local training data of DOi is encrypted as ½½aðiÞ�� ¼ gaðiÞ � hri � SKDOi
mod N2 in Eq.
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(1). As a result, the secret key SKP is unable to decrypt ciphertexts encrypted with SKDOi
. In Eq. (2), each aggregated element

of ½½M�� is ½½a�� ¼ g

Pm
i¼1

aðiÞ

� h
Pm
i¼1

ri � RN
t mod N2, in which N is retrieved through aggregation operation. Therefore, the secret key

SKCSP can only be used to decrypt aggregated results, and only one cloud is required in our system. Besides, for maintaining
the semantic security of Paillier cryptosystem, we add a term hri ¼ ðgcÞri in ½½aðiÞ��, where ri is a random number to achieve
indistinguishability of ciphertexts. In order to break the semantic security, CSP needs to find an x satisfying
hx ¼ 1 mod N2 to break indistinguishability at first. Specifically, with x, CSP is able to compute

½½aðiÞ��x ¼ gx�aðiÞ � SKx
DOi

mod N2 to eliminate the random number ri in the ciphertext. Meanwhile, it can be seen that

gx – 1 mod N2 should also be satisfied for ensuring that the plaintext aðiÞ is not eliminated. Therefore, x should satisfy both
hx ¼ 1 mod N2 and gx – 1 mod N2. In the following, we prove that such an x is nonexistent.

Claim. In our modified Pailler cryptosystem, it is impossible to find a x satisfying hx ¼ 1 mod N2 and gx – 1 mod N2 to
break the indistinguishability.

Proof. In order to achieve the first condition hx ¼ gc�x ¼ 1 mod N2, since the order of g is a multiple of N (i.e.,
ordðgÞ ¼ k � N, where k is an integer), the following equation should be satisfied.
c �x ¼ k0 � k � N ¼ k0 � k � p � q;
where k0 and k are integers. Then, we have
x ¼ k0 � k � p � q
c

:

Since gcdðc; kÞ ¼ 1 and p; q are primes, k0 should be a multiple of c, i.e., k0 ¼ k00 � c. As a result,
x ¼ k00 � k � p � q ¼ k00 � ordðgÞ;
which cannot satisfy the second condition gx – 1 mod N2. Therefore, CSP is impossible to find a x for breaking indistin-
guishability of our modified Paillier Cryptosystem.

Based on above analysis, it can be verified the local training data of DOs are well protected with our encryption algorithm.
Moreover, for inferring a DO’s local training data, it is required for CSP to collude with other m� 1 DOs, which is impossible
in reality. Therefore, collusion attack is resisted in our scheme. Besides, for each data aggregation task, the task id Rt is
renewed by TA to update secret keys for each MC, with which the replay attack is also resisted.
� The Accuracy of Global Regression Model is Ensured. In practice, fuzzy data may sneak into local dataset of DOs, and

even poisoning attacks may be executed by adversaries. As a result, the accuracy of trained global regression model is
reduced.

In VANE, CSP is able to estimate the accuracy of global regression model through computing Residual Sum of Squares

(RSS) RSSðhÞ ¼Pu
l¼1ðPreðy0ðlÞÞ � y0ðlÞÞ2 with a testing dataset. In addition, after each model updating, CSP compares the RSS

between the original model h and the updated model hu with C ¼ RSSðhuÞ=RSSðhÞ. Specifically, C < 1 means that new coming
data contributes positively to the global regression model. Thus, CSP accepts this model updating and returns the updated
global regression model to DOs. In addition, while C P 1, it means that the accuracy of global regression model is reduced
and fuzzy data may exist in training data. Then, CSP discards this model updating, with which the accuracy of global regres-
sion model can be guaranteed.
6. Performance evaluation

In this section, we analyze and test the performance of the proposed VANE in terms of accuracy, computation cost and
communication overhead, and make a comparison with the PrivFL [18]. In detail, PrivFL is an integrated federated regression
scheme supporting linear, ridge, and logistic training, which is constructed with homomorphic encryption and double-cloud
architecture.
6.1. Evaluation environment

In order to measure the integrated performance, we conduct the experiment in Java running on the PC with one 2.2-GHz
Intel Core i7, 16-GB memory, and Windows 10 system. Moreover, we set the security parameter as j ¼ 1024 in our modified
Paillier cryptosystem. For PrivFL, we choose Paillier cryptosystem as the homomorphic encryption algorithm, and also set the
security parameter as 1024. Note that the computation cost of data normalization is not considered during our evaluation,
since it can be ignored in the whole training process. For testing the accuracy of our VANE, we first use 6 real datasets to train
linear, ridge and logistic regression models. Besides, we also use a synthetic dataset to test all factors affecting the perfor-
mance of our VANE, and make a comparison with PrivFL. The details of datasets are described as follows.
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� Datasets for linear and ridge regression: We first use 3 real datasets for evaluating accuracy of the trained models with
linear and ridge regression. In detail, the target variables in these datasets are continuous, which are suitable for training
linear and ridge regression models. In detail, the 3 datasets are Auto MPG Dataset (AMD) [26], Boston Housing Dataset
(BHD) [12], and Wine Quality Dataset (WQD) [6].
� Datasets for logistic regression: We also select other 3 real datasets for evaluating the accuracy of the trained model with
logistic regression. Different from linear and ridge regression, the target variables in these datasets are binary variables,
which can be used to train classification models with logistic regression. In detail, the 3 datasets are Breast Cancer Dataset
(BCD) [29], Diabetes Dataset (DD) [27], and US Census Income Dataset (UCID) [16].
� Synthetic dataset: In order to test the integrated performance of the proposed VANE, we generate a synthetic dataset ran-
domly, which consists of 2000 instances. Each instance contains 20 dimensions, and the value of each element is ran-
domly picked with positive decimals.

6.2. Accuracy evaluation

As mentioned above, we evaluate the accuracy of our VANE on 6 different real datasets: 3 datasets for evaluating the lin-
ear/ridge regression training, and other 3 datasets for logistic regression training. The dimension of the datasets ranges from
8 to 12 for linear/ridge regression and from 9 to 14 for logistic regression. Specifically, the Mean Absolute Error (MAE) and
confusion matrix are used to measure the accuracy of the trained model for linear/ridge and logistic regression, respectively.
Moreover, for different datasets, we set different parameters (i.e., learning rate, regularization parameter, and iteration
times) to train different models. Tables 2 and 3 show the test results, it can be seen that our VANE is available in practice.
Note that, the privacy-preserving mechanism is not used in this section.

6.3. Computation cost

In this section, we analyze and test the computation cost of our VANE in terms of linear regression and logistic regression,
and make a comparison with PrivFL. Note that in this section, ridge regression is not considered since its main computations
are similar to linear regression in both VANE and PrivFL.

For the sake of simplicity, we only record complex arithmetical operations in this section. Specifically, we set tinv ; texp and
tmul to represent the computation cost of a modular inverse, a modular exponentiation and a modular multiplication oper-
ation, respectively. In addition, we also use m; d;n, and l to represent the number of data owners, data dimensions, all train-
ing samples, and iterations for training a regression model, respectively.
� Computation cost of our VANE
In VANE, for securely training a linear regression model, DOs encrypt their local training data through our modified Pail-

lier cryptosystem, which costs 2m � ðdþ 1Þ2 � ðtexp þ tmulÞ. Then, CSP aggregates encrypted local training data from DOs, and

decrypts aggregated results to obtain global train data, which costs m � ðdþ 1Þ2 � tmul and ðdþ 1Þ2 � ðtinv þ 2tmul þ texpÞ, respec-
tively. Therefore, the total computation cost of CSP is ðdþ 1Þ2 � ðtinv þ ðmþ 2Þ � tmul þ texpÞ. For securely training a logistic
regression model with VANE, since the most time-consuming operations are encryption, decryption, and modular multipli-

cation, which are the same as linear regression. Thus, the computation cost of DOs and CSP are 2m � ðdþ 1Þ2 � ðtexp þ tmulÞ and
ðdþ 1Þ2 � ðtinv þ ðmþ 2Þ � tmul þ texpÞ, respectively.
� Computation cost of PrivFL
In PrivFL, for securely training a linear regression model, the computation cost of DOs in one iteration is

ð3nþ 2ndÞ � tmul þ 2 � ðnþ dþ ndþ 1Þ � texp. Besides, the computation cost of CSP in one iteration is
ðdþ 2mþ 1Þ � tmul þ ð2dþmþ 2Þ � texp þm � tinv . Therefore, the total computation cost of DOs and CSP is
l � ððnþ dþ 2ndÞ � tmul þ 2 � ðnþ dþ ndþ 1Þ � texpÞÞ and l � ððdþ 2mþ 1Þ � tmul þ ð2dþmþ 2Þ � texp þm � tinv ÞÞ, respectively. For
secure training a logistic regression model, it costs ð13nþ 2ndÞ � tmul þ ð10nþ 2dþ 2ndþ 2Þ � texp for DOs in one iteration.
Meanwhile, ðdþ 2mþ 4nþ 1Þ � tmul þ ð2dþmþ 5nþ 2Þ � texp þ ðmþ nÞ � tinv should be executed by CSP. Therefore, the total
computation cost of secure logistic training for DOs and CSP is l � ðð13nþ 2ndÞ � tmul þ ð10nþ 2dþ 2ndþ 2Þ � texpÞ and
l � ððdþ 2mþ 4mnþ 1Þ � tmul þ ð2dþmþ 5mnþ 2Þ � texp þ ðmþmnÞ � tinv Þ, respectively.
Table 2
Accuracy Evaluation of Linear and Ridge Regression

Dataset d n a k l MAE (linear) MAE (ridge)

AMD [26] 8 392 10�1 10�2 103 0.4623 0.4827

BHD [12] 14 506 10�1 10�2 103 3.266 3.649

WQD [6] 12 1599 10�1 10�2 103 0.5277 0.5614

d: dimension; n: the number of samples; a: learning rate; k: regularization parameter;
l: the number of iterations.
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Table 3
Accuracy Evaluation of Logistic Regression

Dataset d n a k l Accuracy (logistic)

BCD [29] 9 699 10�1 10�2 103 95.70%

DD [27] 9 768 10�1 10�3 104 77.08%

UCID [16] 14 48842 10�1 10�3 5� 103 81.56%

d: dimension; n: the number of samples; a: learning rate; k: regularization parameter;
l: the number of iterations.
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� Comparison
In Tables 4 and 5, we present the comparison of computation cost for our VANE and PrivFL theoretically. Specifically, for

VANE, it can be seen that the computation cost of both linear and logistic regression is independent of the number of training
samples n since the local datasets are pre-processed by data owners. Besides, the computation cost of VANE is also indepen-
dent of the number of iterations since interactions are not required in the whole training process. Nevertheless, in PrivFL,
each sample should be computed with the encrypted global model parameters in every iteration, therefore, the computation
cost of PrivFL increases linearly with the number of training samples n and dimensions d. Moreover, since the operations
should be repeated in PrivFL for every iteration of gradient descent, the computation cost also increases with the number
of iterations l. As a result, the computation cost of our VANE is only related with the number of dimensions d and data own-
ersm, while PrivFl is related with the number dimensions d, data ownersm, training samples n, and iterations l, which makes
VANE more efficient than PrivFL.

In Fig. 4), we further plot the computation cost of our VANE and PrivFL with the generated synthetic dataset. Specifically,
we set the security parameter j ¼ 1024, the number of data owners m ¼ 3, the iterations of gradient descent l ¼ 100, the
number of dimensions d varying from 10 to 15, and the number of all training samples n varying from 1200 to 2000. From
Fig. 4 (a), (c) and (d), we can see that the computation cost of VANE is not affected with n while that of PrivFL increases lin-
early, and the computation cost of PrivFL is much higher than VANE. Note that in Fig. 4 (b), the computation cost of cloud
service provider in PrivFl also maintains a constant with different number training samples, which is owing to the cloud ser-
vice provider only needs to process the aggregated results of training samples. However, our VANE can also perform better
than PrivFL in this case.
6.4. Communication overhead

In this section, we analyze and test the communication overhead of our VANE in terms of linear regression and logistic
regression, and make a comparison with PrivFL.
� Communication overhead of our VANE
In both of secure linear and logistic regression training of VANE, interactions are not required between data owners and

the cloud service provider. Specifically, each DOi first pre-processes its local dataset to a ðdþ 1Þ � ðdþ 1Þ matrix MðiÞ, and

encrypted elements in MðiÞ with our modified Paillier cryptosystem. Finally, each DOi outsources ½½MðiÞ�� to the cloud service

provider. Note that the length of every encrypted element in ½½MðiÞ�� is 2j bits, where j is the security parameter. Therefore,

the total communication overhead between DOs and CSP in VANE is 2m � ðdþ 1Þ2 � j bits.
� Communication overhead of PrivFL
In PrivFL, for securely training a linear regression model, it spends 2 � ðdþ 1Þ � j bits for CSP to public the encrypted global

model parameters in every iteration. Then, each DOi returns its encrypted local gradient descent to CSP, which spends 2 � j
bits. Therefore, the total communication overhead of secure linear regression training between DOs and CSP is
2ml � ðdþ 2Þ � j bits. For securely training a linear regression model, more interactions should be executed between each
DOi and CSP in every iteration, which spends extra 6nj bits. Therefore, the total communication overhead of secure logistic
training is 2l � ð2mþ 3nþmdÞ � j bits.
� Comparison
In Table 6, we present the comparison of communication overhead for our VANE and PrivFL theoretically. Similar to com-

putation cost, in secure linear regression training, the communication overhead of VANE only increases with the number of
Table 4
Computation cost of VANE vs PrivFL (Linear)

Linear regression VANE PrivFL

Data owners 2m � ðdþ 1Þ2 � ðtexp þ tmulÞ l � ððnþ dþ 2ndÞ � tmul þ 2 � ðnþ dþ ndþ 1Þ � texpÞÞ
cloud service provider ðdþ 1Þ2 � ðtinv þ ðmþ 2Þ � tmul þ texpÞ l � ððdþ 2mþ 1Þ � tmul þ ð2dþmþ 2Þ � texp þm � tinv ÞÞ
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Table 5
Computation cost of VANE vs PrivFL (Logistic)

Logistic regression VANE PrivFL

Data owners 2m � ðdþ 1Þ2 � ðtexp þ tmulÞ l � ðð13nþ 2ndÞ � tmul þ ð10nþ 2dþ 2ndþ 2Þ � texpÞ
cloud service provider ðdþ 1Þ2 � ðtinv þ ðmþ 2Þ � tmul þ texpÞ l � ððdþ 2mþ 4nþ 1Þ � tmul þ ð2dþmþ 5nþ 2Þ � texp þ ðmþ nÞ � tinv Þ

Fig. 4. Computation cost of VANE vs PrivFL.

Table 6
Communication overhead of VANE vs PrivFL

VANE PrivFL

linear regression 2m � ðdþ 1Þ2 � j 2ml � ðdþ 2Þ � j
logistic regression 2m � ðdþ 1Þ2 � j 2l � ð2mþ 3nþmdÞ � j
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dimensions d and data owners m, while PrivFL increases with the number of dimensions d, data ownersm and iterations l. In
secure logistic regression training, the communication overhead of VANE is the same as linear regression training, and PrivFL
increases with the number of dimensions d, data owners m, training samples n, and iterations l. Therefore, our proposed
VANE performs much better than PrivFL especially when the size of training dataset is large.

In Fig. 5, the communication overhead of our VANE and PrivFL are plotted with different number of dimensions and train-
ing samples. Specifically, in Fig. 5 (a), we can see that the communication overheads of both VANE and PrivFl are not changed
197



Fig. 5. Communication overhead of VANE vs PrivFL.
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with the varying number of training samples, but PrivFL consumes more communication overhead than that of VANE. More-
over, in Fig. 5 (b), VANE maintains low communication overhead with different number of training samples while PrivFL lin-
early increases. As a result, it can be concluded that VANE is more efficient than PrivFL in terms of communication overhead,
and can be applied in practice.
7. Related work

In this section, we briefly discuss some related works about federated learning and privacy-preserving regression
training.

Federated learning. Recently, federated learning has been widely researched with the rapid growth of internet data.
Zheng et al. [37] designed a non-interactive skyline points extracting scheme over ciphertexts, which is able to merge the
skyline bounds from multiple data owners without disclosing sensitive information. Based on secret sharing and homomor-
phic function, Xu et al. [32] presented a secure and verifiable federated learning scheme, with which federated deep learning
is achieved and the final learning results are verifiable. Xie et al. [31] proposed a new robust distributed optimization algo-
rithm with efficient communication and attack tolerance, which achieves provable convergence and is robust in practice.
Ang et al. [1] proposed a novel federated learning scheme for declining the effect of data noise, which can tackle the unavail-
able maxima or minima noise during the process of federated learning. Based on Paillier cryptosystem, Yang et al. [35] pre-
sented an efficient federated learning scheme for distributed Naïve bayesian training, which improves the efficiency of
secure Naïve bayesian training through introducing super-increasing sequence. Liu et al. [17] proposed a new medical data
aggregation algorithm based on double-cloud architecture, and further constructed a federated Naïve Bayesian training
scheme for distributed clinical decision support system. Although Paillier cryptosystem is extensively used in federated
learning scheme, it can only be deployed in double-cloud model to aggregate local data from data owners, which brings extra
communication overhead and is hard to achieve in reality. Moreover, most above-mentioned distributed machine learning
allows to training a more precious model with multiple data owners’ local data. However, high computation complexity and
complicated architecture are inevitable in these schemes, which makes them hardly to be applied in the real environment.

Privacy-preserving regression training. Nowadays, privacy-preserving regression training has also attracted much atten-
tion in the area of machine learning. Yang et al. [34] proposed a secure gradient descent computation method with homo-
morphic encryption, and constructed an efficient and privacy-preserving linear regression protocol over outsourced
encrypted data. Jagielski et al. [14] introduced a fast statistical attack of linear training, meanwhile, they also designed a
novel defense method which can resilient against poisoning attacks in regression training. Cock et al. [5] designed a secure
two-party protocol to securely execute ordinary least square (OLS), and which achieved high-efficiency of linear regression
training in online phase. Maddal et al. [18] considered the data normalization problem before model training, and proposed a
comprehensive privacy-preserving method for linear, ridge, and logistic regression training. Specifically, cubic polynomial is
used to approximate the loss function of logistic regression, which makes additive homomorphic encryption available in
their scheme. Mohassel et al. [20] proposed a novel system which can train a linear, logistic or neural network model with
double-cloud model, which is a general method for machine learning algorithms. Du et al. [8] proposed a framework
enabling multiple parties to train a learning model collaboratively, which can achieve accurate model training and �-
differential privacy. However, most above-mentioned schemes rely on multi-round communication to achieve privacy-
preserving gradient descent algorithm, which brings massive extra communication overhead.
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Table 7
Functionality comparison

[8] [18] [5] [34] [20] VANE

Multi-party training U U � � U U

Intergraded training U U � � U U

Non-interactive � � U U U U

Single cloud model U � U U � U

Model estimation � � � � � U

High-efficiency � U � U � U

F. Wang, H. Zhu, R. Lu et al. Information Sciences 552 (2021) 183–200
Different from above works, our proposed scheme aims at non-interactive model training and privacy issues. Based on
data pre-computation, interactions between data owners and the cloud service provider are not required, and the local train-
ing data can be well protected during global regression model training. Moreover, only one cloud is required in our system. In
detail, we make a detailed comparison of VANE and existing schemes in Table 7. From the table, it can be seen that our VANE
is more practical in the real environment.

8. Conclusion

In this paper, we have proposed a secure and non-interactive federated learning scheme for regression training, called
VANE. Based on the proposed secure data aggregation algorithm, in VANE, the CSP can securely aggregate local training data
from multiple DOs over ciphertexts, and train a global regression model with the aggregated result. In the whole training
process, interactions are not required between DOs and CSP. Moreover, the proposed scheme also greatly improved the effi-
ciency of secure federated regression training through data pre-processing. Detailed security analysis showed its security
strength and privacy-preserving ability, and extensive experiments were conducted to verify its high efficiency.
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